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Crossings and writhe of flexible and ideal knots
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The data of ideal knotfNature,384, 142 (1996] are reanalyzed and the average crossing number of the
ideal knots(X);geal Shows a nonlinear behavior with the essential crossing nu@b8upplemented with our
Monte Carlo simulations using the bond fluctuation model on flexible knotted polymers, our analysis indicates
that (X)iqeal varies nonlinearly with botfC and the corresponding average crossing number of the flexible
knot, which is contrary to previous claims. Our extensive simulation data on the average crossing number of
flexible knots suggest that it varies linearly with the square rodZ.offurthermore, our data on the average
writhe number(Wr) indicate that various knots are classified into holonomous groups,(&fml has a
quantized linear increment witB in all four knot groups in our study.
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[. INTRODUCTION ings of a knot projected on a plarterhich is =C) is still a
physically useful quantity, since it shows how entangled the

Knots play crucial and significant roles not only in math- polymer is, at least in an average sense. Especially from the
ematics[1,3], but also in physics and biomoleculp$-13. viewpoint of polymer physics, the average crossing number
Mathematicians have studied knots since the 19th centuryX (i.e., the average number of crossings when the knot is
but physicists only for the last few decades. In mathematicsprojected and averaged over all directipreflects the inter-
the classification of knots is one of the most important prob-actions among the segments. Unli€e X is a real number
lems[1,2]. In biology, DNA could appear as knotted DNA and not a topological invariant.
during replication processes with the help of enzymes Another important topological quantity to characterize a
[11,12. Also, knotted DNA undergoing gel electrophoresis knot is the writhe of a knot. In simple words, writhe is the
could help biologists to identify what type of knot the DNA sum of all signed crossings when we view the knot from a
is [14]. Also, knotted structures in proteins may provide certain direction. There are basically two common notions of
some clues to their folding proces4és]. Therefore, under- the writhe of a knot, namely, the topological writeand
standing the topological effects of knotted polymers is ofthe average writhe Withe writhe average over all directions,
both fundamental and practical importance. The geometri€alled three-dimensional writhe in R¢R6]). The topologi-
and physical properties of flexible knotted ring polymers wascal writhew (also known as the Tait numbes the sum of
studied by some authofd6—25. The relation between to- all signed crossings when the knot is projected onto a plane
pological invariants and the static and dynamic quantities of
knotted polymers, i.e, radius of gyration and relaxation time,

was investigated18,22—29. In order to study different
types of knotted ring polymers, seeking suitable quantities
that can identify the knot type is of practical importance. The
most commonly used and intuitive one is the essential cross-
ing numberC, which is the minimal number of crossings

when the knot trajectory is projected onto a plane. The no- T

tation we used for knot types is the standard Alexander-
Briggs notatior]2]. Figure 1 shows some knots in their stan-
dard projections, with minimal crossings. Traditionally,
knots are labele€y , whereC is the number of essentiébr
minimal) crossings no matter how the knot is topologically
deformed without cutting itK is just a label to distinguish

topologically different knots. For the purpose of distinguish-
ing topologically different knotsC is not an effective quan-
tity because there are many topologically different knots
having the same value &. However, the number of cross-

*Author to whom all correspondence should be addressed. Elec-
tronic address: pylai@spll.phy.ncu.edu.tw
TPermanent address for Pik-Yin Lai. FIG. 1. Knot diagrams for various prime knots.
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FIG. 2. Sign convention of the writhe of a crossing. Lefti;

right: —1 FIG. 3. Left: Standard projection knot diagram of the trefail 3

Right: Maximally inflated ideal knot of 3

Wlth minimal crossings. Imagine a certain direction is as-pf p measures the complexity of a knot, and it could distin-
signed to the knot as one traces along the contour lengthjuish knots somewhat better th@nbut on average varies
then, as the knot is projected on a plane, each crossing caifearly with C. Figure 3 is a schematic representation of an
have two possible configurations, as shown in Fig. 2. Thedeal 3, knot. Katritch et al. studied the average crossing
sign convention of+ 1 and—1 crossings is shown, avdis  number and writhe of ideal knots up ©=11 minimum

just the algebraic sum of all thesel’s and—1's. Just like  crossingg19], and they also studied the torus ideal knots up
the essential crossing, w is an integer, and is a topological to C=63 [30]. Finally, they observed a linear correspon-
invariant for a given knot type. The first column in Table | dence between the average crossing number of ideal knots
gives the values ofv for various knots in this study. Botw  and thermally equilibrated flexible DNA knots. Thus it was
and Wr can be used to characterize the chirality of a knot. Aoroposed that the average shape of knotted flexible poly-
knot is achiral(i.e., it is topologically identical to its mirror ~Meric chains in thermal equilibrium is closely related to the
image if and only if w=0 (and also W=0). However, Wr  ideal knots of a corresponding knot type in the sense that the
can quantify the chirality of a knot more effectively, since it 2€rage crossing numbers Qf the _|deal and ﬂex[ble knots are
is an average quantity which takes real values and can didnearly related. In order to investigate the relation between
tinguish different knots better. Katrito#t al. studied the av- 1€ Properties of ideal and flexible knots, a more detailed and
erage writhe of ideal knotgl9], and observed a linear rela- complete stydy is needed. For mstanc;e, the average crossing
tion between Wr and the minimun crossing numigfor number of ideal knots has been claimed to show a linear

some categories of knots. Similar results of a linear variatiorﬁ:orre'atlon \.N'thp [19]' However, after f_urther studies on
of Wr with C for torus flexible knots on a cubic lattice up to more complicated ideal knots of a torus, it was found that the
nine essential crossings were also observed in [R&f. relation betvveen_the average crossing nhumber pndo
Instead of flexible knots, the notion of ideal kndtight longer follows a Imear_ relat|0|[|30].. In this paper we shall
knotg and their geometrical properties has attracted mucﬁeanalyze _the data_on ideal kno.ts n RéﬂsQ,ZS] in terms of
interest in recent yeargl8-20,28,2% The so-called ideal Fhe e_ssenngl crossmgs.and clarify these issues t_)y perfqrm-
knot is the tightest knot for a given rope. That is, for a givenmg simulations on flexible knotted polymers using a differ-
diameter of a rope, the ideal configuration of the knot iseNt model.
defined to be the one with the shortest contour length. In-
stead ofC, a new topological invariancp has been used,
which is defined as the length to diameter ratio of the knot at We study the knotted polymers up to a minimum crossing
its maximally inflated statgl8], to identify knots. The value of 20: 3,,4,,5,,5,, . ..,2Q. The knot diagrams of some of

1. MODEL AND SIMULATION DETAILS

TABLE |. Table showing the different knot groups in this paper with their Alexander polynomigdy
and Conway notationg2]. C is the number of essential crossings in the knot.

Knot Group w Wy wy (Wr) A(s) Conway notation
(2,C) torus knots
C

(315,71, ...) c c-1 1 19..° (1+s9)/(1+s) C

7 7
Even twist knots

4 16 ¢ c (C-2)(2)
(44,61,8;, ...) CcC-4 0 C—-4 7(:— 7 E_:|__(C_:|_)S+ E_1)52
Odd twist knots

4 12 C-1 Cc-1 C-2)(2
(52729, ...) c 2 C-2 et - (C-2)st (C=2)(2)

) (C-3)(1)(2)

(6,,8,,1 ) c-4 c-4 o D% 1+s7
21821 021 7 7 _1+3S(W
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the prime knots we study are shown in Fig. 1. We have 30 T T — I
chosen all the knots with non-negative topological writhe i @ 8
values. The values of the writhe of a knot and its mirror f O54005p DNA

image differ by a factor of-1. The simulation model we . 7 ideal knots 8 8 ]
used is the bond fluctuation mod8li1]. The bond fluctuation 20 - 8 o ]
model is a coarse-grained model of polymers; monomers are E ]
put on sites of a cubic lattice. All the detail excluded volume -
interactions are modeled as a nonoverlapping of monomers. E = ]
N monomers are sequentially connected by bond vectors to oF ° B =
form a ring polymer. Bond vectors are only allowed in the i o 2 ]
permutation set of{(*2,00),(x2,+1,0),(x2,+1,+1), - o
(£2,£2,+£1),(£3,00),(*=3,£1,0)}; therefore, bond cross- -
ing are forbidden, and the topology of the polymer knot 0 a—t !
could be preserved. For each Monte Carlo move, a monomer C
attempts to move randomly to one of its nearest neighbor

lattice sites. The trial move is accepted if the excluded vol- 120 ' . . .

ume is obeyed and the new bond vectors still belong to the - (b)

allowed set. In our simulation of flexible polymer knots, the - ©N=I80 A 1
initial knot configurations are well equilibrated for several 100 £ AN=240 A -
million Monte Carlo steps per monomer. The measurements 2 ]

<X>
O
a
[m]m}

<X>
'
%
°
o

ideal

(r—r )-drxdr’

|r—r |3

of the average crossing and writhe are then taken over about .
ten times of the equilibration time. Thermal average is de- 80 F
noted by(---). Various knot groups, listed in Table I for
chain lengths up tdN= 240, are studied. The writhe number LA ° ]
Wr is calculated a$32] 60 £ 069 3
(r—r')-drxdr’ 4
WI’— — % é , (1) r
Ir=r'|® 40 ¢ : : : : .
0 10 20 30 40 50
where the integrals are integrated along the contour of the <X>
knotted ring polymer. The average crossing humber is calcu-
lated in a similar wayf19], by the integral FIG. 4. (8 (X) vs C for ideal knots and 5400bp DNA flexible
knots. (b) Mean crossing number for the flexible kndtf) vs the
mean crossing number of the corresponding knot in its ideal con-
jg Sg 3] figuration(X)4ea . Values of(X) are from our simulations of the
bond fluctuation model. Values ¢K);qea and DNA data are taken
The mean contour length of the flexible knot is also meafrom Refs.[19,30.
sured, and we ensure that the knot is far from being tight. In
most cases, the mean contour length of the flexible knot igverage crossing number of various flexible knotted poly-
almost the same<{1%) as the circular unknot,Owith the ~ mers are analyzed, together with the data of 5400bp DNA,
sameN. and are depicted in Fig. 6. It appears that the average cross-
ing number of flexible knotted polymers is consistent with a
Ill. AVERAGE CROSSING NUMBER linear variation of thg square 'root Qf th!a minimum crossing
number(X)~/C. This result is quite different from those
Here the average crossing number measured for an idefdr ideal knots which behave dX);4ca*C2 In Ref.[19],
knot is denoted aéX);qeq, While the average crossing num- knots were studied only up to a crossing to 11, and the av-
ber of a flexible knot is without the subscript. Figur@dis  erage crossing numbers of ideal and flexible knots seemed to
a replot of the data in Ref19] on the average crossing be linear. However, the study of torus knots up to 63 cross-
number versusC for ideal and flexible knots of 5400bp ings in Ref.[30] provided a clue to this nonlinear relation.
DNA. (X) for the flexible DNA appears to curve away from As in our study, the knots are more complicated, and are
a linear relation withC. To confirm this nonlinear behavior, from various families up to 20 crossings; the nonlinear be-
we independently perform simulations for flexible knots us-havior is shown explicitly. Figure () displays the average
ing the bond fluctuation model for knotted polymersMf crossing numbers of ideal knots and flexible knots; in con-
=180 and 240. The results are shown in Figh)4lt is quite  trast to the results in Ref$19,28, the nonlinear tendency
obvious that a strictly linear relation between tf€) and  could be seen explicitly.
(X)igeal does not hold. Furthermore, by fitting the data in  We further examine the excess average crossing number
Ref.[30] up toC= 63 for ideal knots, as shown in Fig. 5, we of a flexible knot{AX), defined as the difference of average
empirically find that the power lawX)igea<C*? can de-  crossing numbers between a given knot type and the trivial
scribe these data on ideal knots very well. The data for thé&not 0, with the sameN. In Fig. 7,{AX) is plotted against
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FIG. 5. The mean crossing number of ideal knots plotted against

C12 Inset:(X);geqs VS C. Data are taken from Ref30]. FIG. 7. Mean excess crossings plotted agaif@tfor flexible

knots of various lengths. Inset: the slopes of the fitted straight lines

JC for different flexible knots with various lengths. The (@n) vsN. Straight lines are best fits to the data.

variation of (AX) follows a linear behavior with/C for a . . . _
given N; moreover, the lines for different values bf all  the almost identical values gWr) for ideal and flexible

intersect at the same point. This suggests a relation of th&nots can be understood as the following: each snapshot con-
form figuration of a flexible knot of a given type, is topologically

equivalent to an ideal knot of the same knot type; hence the
flexible knot can be obtained by lengthening the ideal knot to
the appropriate contour length, and then followed by several
whereay depends oiN. Furthermore, the slopey, increases Reidemeister movel?—4]. For the second and third Reide-

with N as expected, and appears to have a roughly ”nearpeister_ moves, the net writhe r_1umber gain _is zero. For the
dependence oN, as shown in the inset of Fig. 7. first Reidemeister move, the writhe number increases or de-

creases by 1 depending on the right or left-handed crossing
so produced. But the right- and left-handed crossings have an
equal opportunity to occur, since flexible knot configurations
In this section, we focus on the results of mean writhe'esult from a random thermal motion, so the mean writhe

number of ideal and flexible knots. Comparing the averagd&umber(Wr) is unchanged after averaging. Therefore, ideal
writhe number of ideal knots with flexible knots, they are knots could represent flexible real knots for the average

numerically very close, as shown in Fig. 8. The reason foMrithe number, but not for the average crossing number as
we discussed previously. It is worth noting that the value of

(AX)=ay(VC—1), 3

IV. LINEAR INCREMENT OF THE MEAN WRITHE
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FIG. 8. Mean Wr vsC for ideal knots and flexible knots. Data
for the ideal knots are from Refg19,30.

FIG. 6. Mean crossing number of flexible knots«& for knots
of various lengths. Data for the DNA are from Ref$9,30.

021506-4



CROSSINGS AND WRITHE OF FLEXIBLE AND IDEAL KNOTS PHYSICAL REVIEW B3 021506

T T T writhe, respectively. Bothv, andw, are topological invari-
ants, and take integer values. Table | displays the values of
these invariant writhes in terms @f for the knot groups in
this study. Wherw andw, are translated in terms @, the
empirical formula[Eq. (4)] implies that{Wr) is a linear
function of C, and is tabulated in Table | for each knot
group. From the empirical formulas in Tabléfifth column),
the slopes of the even and twist knots are the sam€/(A)0
while the slopes of the other two groups take the same values
of 4C/7. Our data indicate that the empirical formula holds
rather well, although there are still some noticeable small
deviations. For example, for,7and 8, knots, Eq.(4) predicts
them to be the same witfWr)=40/7=5.714, but our results
indicate that a Wr) of 7, is larger than one of 8 the dif-

C ference, though small, is larger than the estimated uncer-

tainty.

FIG. 9. Mean writhe{Wr) vs C for various flexible knots. All <V}\I/r> measures the average chirality of a knot, or the de-
data are witiN=180. Uncertainties are much less than the sizes Ofgree of mirror asymmetry, as the knot is viewed from all
the symbols. directions. In a certain sense the value(@fr) is governed

o ) by the detailed topological interactions among the segments
(Wr) is independent of the knot contour lengee Fig. 8 iy the knot. The similarity of the detail topology within a
and thus represents a scale independent topological feature@foup will hence classify the values ¢¥vr) into different
the knot type. _ _ knot groups, as shown in Fig. 9. Presumably the principal

Another interesting result is the dependenceWf) on  portion of these topological interactions gives rise to the nice
C, which is shown in Fig. 9. The data indicate a naturaljinear pehavior of Wr) within a group as given by the fifth
categorization of the knots in this study into four types.column in Table I, or Eq(4). The small deviations from Eq.

30 oG
03,57,
© 46,8,
F 4.6,,8,10,,...
20 - 45,7,9,..

<Wr>

W
—
(=}
—
(V]
[
(=}
[\
W

Knots 3,,5,,7,, ... belong to the family of torus knots. (4) are possibly due to the fine structures of the topological
Knots 4,,6,,8;, ... are twist knots with even number of interactions, which results in observable corrections from the
crossings. Knots 57,,9,, ... are twist knots with an odd principal topological interactions. In fact, in a recent study of

crossing number. These groups are known as holonomoyfnequilibrium relaxation of a cut kn¢83], it is observed
families to knot theorists. That knots are classified intothat such a natural classification into the same knot groups
groups by the mean writhe number is not too surprisingalso occurs in a nonequilibrium relaxation time which also

because each of these knot groups has topological propertifgs a linear variation witks within a group.
in common with the others. This is clearly reflected by the

parametrization of their Alexander polynomials and the Con-
way notations within each group. Table | displays these knot V. SUMMARY
invariants for the four knot groups in this study. The linear
relationship between the average writhe number and the By extensive simulations we have studied flexible knots
minimum crossing number within each knot group is evenup to a crossing of 20. Our results show that the relation
more astonishing. between average crossing numbers of ideal and flexible
Such a linear increase ¢fVr) within a holonomous knot knots is nonlinear, which disagree with the claim that ideal
group was also observed recently in simulation studies oknots could represent the physical properties of flexible
torus knots on a cubic lattid®7] and ideal knot$19] up to  knots. Our data also suggest that the excess average crossing
C=11, and for three knot grouggorus, even, and odd twist number for flexible knots behaves &4 X)=ay(/C—1).
knots. Our results show explicitly that such a linear behav-The coefficienta) increases roughly linearly witthN. The
ior is universal in the sense that different polymer modelsaverage writhe numbéeiWr) of a flexible knots is found to
(such as ideal knots, cubic lattice knots and bond-fluctuatiote numerically the same to its corresponding ideal knot, and
modelg have the same behavior. Furthermore our @&ig. s length independent. Thus the ideal configuration of a knot
9) indicate that such a result holds at least ulCte 20, and  can truly represent some properties of a flexible knot, such as
is also valid for the 6,85, ... group. Although there is yet the mean writhe. However, for some other geometrical or
no theoretical understanding of the origin of such a lineaphysical properties, such as the mean crossing numbers, the
increment of Wr), Cerf and Stasiak attempted to summarizeideal configuration may not be that useful, as they are non-
such a linear behavior of the data @/r) of ideal knots in  linearly correlated for the ideal and flexible knotdnr)
terms of topological invariants by an empirical form{6] naturally classifies knots into holonomous knot groups with
similar detail topologies. More remarkable is the quantized
(Wry=2w,+ %‘Wy=W+§(WX—Wy), (4) linear increment of Wr) with C within each holonomous
group. Such a linear law is quite well obeyed and presum-
wherew is the topological writhe mentioned before, and  ably arises from the average intrinsic topological interactions
wy=w—w, are the nullification writhe and remaining from the entanglement within the knot.
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