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Crossings and writhe of flexible and ideal knots
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The data of ideal knots@Nature,384, 142 ~1996!# are reanalyzed and the average crossing number of the
ideal knotŝ X& ideal shows a nonlinear behavior with the essential crossing numberC. Supplemented with our
Monte Carlo simulations using the bond fluctuation model on flexible knotted polymers, our analysis indicates
that ^X& ideal varies nonlinearly with bothC and the corresponding average crossing number of the flexible
knot, which is contrary to previous claims. Our extensive simulation data on the average crossing number of
flexible knots suggest that it varies linearly with the square root ofC. Furthermore, our data on the average
writhe number^Wr& indicate that various knots are classified into holonomous groups, and^Wr& has a
quantized linear increment withC in all four knot groups in our study.
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I. INTRODUCTION

Knots play crucial and significant roles not only in mat
ematics@1,3#, but also in physics and biomolecules@4–13#.
Mathematicians have studied knots since the 19th cent
but physicists only for the last few decades. In mathemat
the classification of knots is one of the most important pr
lems @1,2#. In biology, DNA could appear as knotted DN
during replication processes with the help of enzym
@11,12#. Also, knotted DNA undergoing gel electrophores
could help biologists to identify what type of knot the DN
is @14#. Also, knotted structures in proteins may provi
some clues to their folding processes@15#. Therefore, under-
standing the topological effects of knotted polymers is
both fundamental and practical importance. The geome
and physical properties of flexible knotted ring polymers w
studied by some authors@16–25#. The relation between to
pological invariants and the static and dynamic quantities
knotted polymers, i.e, radius of gyration and relaxation tim
was investigated@18,22–25#. In order to study different
types of knotted ring polymers, seeking suitable quanti
that can identify the knot type is of practical importance. T
most commonly used and intuitive one is the essential cr
ing numberC, which is the minimal number of crossing
when the knot trajectory is projected onto a plane. The
tation we used for knot types is the standard Alexand
Briggs notation@2#. Figure 1 shows some knots in their sta
dard projections, with minimal crossings. Traditionall
knots are labeledCK , whereC is the number of essential~or
minimal! crossings no matter how the knot is topologica
deformed without cutting it;K is just a label to distinguish
topologically different knots. For the purpose of distinguis
ing topologically different knots,C is not an effective quan
tity because there are many topologically different kn
having the same value ofC. However, the number of cross

*Author to whom all correspondence should be addressed. E
tronic address: pylai@spl1.phy.ncu.edu.tw

†Permanent address for Pik-Yin Lai.
1063-651X/2001/63~2!/021506~6!/$15.00 63 0215
y,
s,
-

s

f
ic
s

f
,

s
e
s-

-
r-

-

s

ings of a knot projected on a plane~which is >C! is still a
physically useful quantity, since it shows how entangled
polymer is, at least in an average sense. Especially from
viewpoint of polymer physics, the average crossing num
X ~i.e., the average number of crossings when the kno
projected and averaged over all directions! reflects the inter-
actions among the segments. UnlikeC, X is a real number
and not a topological invariant.

Another important topological quantity to characterize
knot is the writhe of a knot. In simple words, writhe is th
sum of all signed crossings when we view the knot from
certain direction. There are basically two common notions
the writhe of a knot, namely, the topological writhew and
the average writhe Wr~the writhe average over all directions
called three-dimensional writhe in Ref.@26#!. The topologi-
cal writhew ~also known as the Tait number! is the sum of
all signed crossings when the knot is projected onto a pl

c-

FIG. 1. Knot diagrams for various prime knots.
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with minimal crossings. Imagine a certain direction is a
signed to the knot as one traces along the contour len
then, as the knot is projected on a plane, each crossing
have two possible configurations, as shown in Fig. 2. T
sign convention of11 and21 crossings is shown, andw is
just the algebraic sum of all these11’s and21’s. Just like
the essential crossingC, w is an integer, and is a topologica
invariant for a given knot type. The first column in Table
gives the values ofw for various knots in this study. Bothw
and Wr can be used to characterize the chirality of a kno
knot is achiral~i.e., it is topologically identical to its mirror
image! if and only if w50 ~and also Wr50). However, Wr
can quantify the chirality of a knot more effectively, since
is an average quantity which takes real values and can
tinguish different knots better. Katritchet al. studied the av-
erage writhe of ideal knots@19#, and observed a linear rela
tion between Wr and the minimun crossing numberC for
some categories of knots. Similar results of a linear variat
of Wr with C for torus flexible knots on a cubic lattice up t
nine essential crossings were also observed in Ref.@27#.

Instead of flexible knots, the notion of ideal knots~tight
knots! and their geometrical properties has attracted m
interest in recent years@18–20,28,29#. The so-called idea
knot is the tightest knot for a given rope. That is, for a giv
diameter of a rope, the ideal configuration of the knot
defined to be the one with the shortest contour length.
stead ofC, a new topological invariancep has been used
which is defined as the length to diameter ratio of the kno
its maximally inflated state@18#, to identify knots. The value

FIG. 2. Sign convention of the writhe of a crossing. Left:11;
right: 21
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of p measures the complexity of a knot, and it could dist
guish knots somewhat better thanC, but on averagep varies
linearly with C. Figure 3 is a schematic representation of
ideal 31 knot. Katritch et al. studied the average crossin
number and writhe of ideal knots up toC511 minimum
crossings@19#, and they also studied the torus ideal knots
to C563 @30#. Finally, they observed a linear correspo
dence between the average crossing number of ideal k
and thermally equilibrated flexible DNA knots. Thus it wa
proposed that the average shape of knotted flexible p
meric chains in thermal equilibrium is closely related to t
ideal knots of a corresponding knot type in the sense that
average crossing numbers of the ideal and flexible knots
linearly related. In order to investigate the relation betwe
the properties of ideal and flexible knots, a more detailed
complete study is needed. For instance, the average cros
number of ideal knots has been claimed to show a lin
correlation with p @19#. However, after further studies o
more complicated ideal knots of a torus, it was found that
relation between the average crossing number andp no
longer follows a linear relation@30#. In this paper we shall
reanalyze the data on ideal knots in Refs.@19,28# in terms of
the essential crossingsC, and clarify these issues by perform
ing simulations on flexible knotted polymers using a diffe
ent model.

II. MODEL AND SIMULATION DETAILS

We study the knotted polymers up to a minimum cross
of 20: 31,41,51,52 , . . . ,201. The knot diagrams of some o

FIG. 3. Left: Standard projection knot diagram of the trefoil 31.
Right: Maximally inflated ideal knot of 31.
TABLE I. Table showing the different knot groups in this paper with their Alexander polynomialsD(s)
and Conway notations@2#. C is the number of essential crossings in the knot.

Knot Group w wx wy ^Wr& D(s) Conway notation

(2,C) torus knots

(31,51,71 , . . . ) C C21 1
10
7

C2
6
7

(11sC)/(11s) C

Even twist knots

(41,61,81 , . . . ) C24 0 C24
4
7

C2
16
7

C

2
212~C21!s1SC221Ds2

(C22)(2)

Odd twist knots

(52,72,92 , . . . ) C 2 C22
4
7

C1
12
7

C21
2

2(C22)s1
C21

2
s2 (C22)(2)

(62,82,102 , . . . ) C24 C24 0
10
7

C2
40
7 2113sS11sC23

11s D2sC22
(C23)(1)(2)
6-2
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CROSSINGS AND WRITHE OF FLEXIBLE AND IDEAL KNOTS PHYSICAL REVIEW E63 021506
the prime knots we study are shown in Fig. 1. We ha
chosen all the knots with non-negative topological writ
values. The values of the writhe of a knot and its mirr
image differ by a factor of21. The simulation model we
used is the bond fluctuation model@31#. The bond fluctuation
model is a coarse-grained model of polymers; monomers
put on sites of a cubic lattice. All the detail excluded volum
interactions are modeled as a nonoverlapping of monom
N monomers are sequentially connected by bond vector
form a ring polymer. Bond vectors are only allowed in t
permutation set of$(62,0,0),(62,61,0),(62,61,61),
(62,62,61),(63,0,0),(63,61,0)%; therefore, bond cross
ing are forbidden, and the topology of the polymer kn
could be preserved. For each Monte Carlo move, a mono
attempts to move randomly to one of its nearest neigh
lattice sites. The trial move is accepted if the excluded v
ume is obeyed and the new bond vectors still belong to
allowed set. In our simulation of flexible polymer knots, t
initial knot configurations are well equilibrated for sever
million Monte Carlo steps per monomer. The measureme
of the average crossing and writhe are then taken over a
ten times of the equilibration time. Thermal average is
noted by^•••&. Various knot groups, listed in Table I fo
chain lengths up toN5240, are studied. The writhe numb
Wr is calculated as@32#

Wr5
1

4p R R ~rW2rW8!•drW3drW8

urW2rW8u3
, ~1!

where the integrals are integrated along the contour of
knotted ring polymer. The average crossing number is ca
lated in a similar way@19#, by the integral

X5
1

4p R R U~rW2rW8!•drW3drW8

urW2rW8u3
U . ~2!

The mean contour length of the flexible knot is also m
sured, and we ensure that the knot is far from being tight
most cases, the mean contour length of the flexible kno
almost the same (,1%) as the circular unknot 01 with the
sameN.

III. AVERAGE CROSSING NUMBER

Here the average crossing number measured for an i
knot is denoted aŝX& ideal , while the average crossing num
ber of a flexible knot is without the subscript. Figure 4~a! is
a replot of the data in Ref.@19# on the average crossin
number versusC for ideal and flexible knots of 5400b
DNA. ^X& for the flexible DNA appears to curve away fro
a linear relation withC. To confirm this nonlinear behavior
we independently perform simulations for flexible knots u
ing the bond fluctuation model for knotted polymers ofN
5180 and 240. The results are shown in Fig. 4~b!. It is quite
obvious that a strictly linear relation between the^X& and
^X& ideal does not hold. Furthermore, by fitting the data
Ref. @30# up toC563 for ideal knots, as shown in Fig. 5, w
empirically find that the power laŵX& ideal}C1.2 can de-
scribe these data on ideal knots very well. The data for
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average crossing number of various flexible knotted po
mers are analyzed, together with the data of 5400bp DN
and are depicted in Fig. 6. It appears that the average cr
ing number of flexible knotted polymers is consistent with
linear variation of the square root of the minimum crossi
number^X&;AC. This result is quite different from thos
for ideal knots which behave as^X& ideal}C1.2. In Ref. @19#,
knots were studied only up to a crossing to 11, and the
erage crossing numbers of ideal and flexible knots seeme
be linear. However, the study of torus knots up to 63 cro
ings in Ref.@30# provided a clue to this nonlinear relation
As in our study, the knots are more complicated, and
from various families up to 20 crossings; the nonlinear b
havior is shown explicitly. Figure 4~b! displays the average
crossing numbers of ideal knots and flexible knots; in co
trast to the results in Refs.@19,28#, the nonlinear tendency
could be seen explicitly.

We further examine the excess average crossing num
of a flexible knot^DX&, defined as the difference of averag
crossing numbers between a given knot type and the tri
knot 01 with the sameN. In Fig. 7, ^DX& is plotted against

FIG. 4. ~a! ^X& vs C for ideal knots and 5400bp DNA flexible
knots. ~b! Mean crossing number for the flexible knots^X& vs the
mean crossing number of the corresponding knot in its ideal c
figuration ^X& ideal . Values of^X& are from our simulations of the
bond fluctuation model. Values of^X& ideal and DNA data are taken
from Refs.@19,30#.
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JUIN-YAN HUANG AND PIK-YIN LAI PHYSICAL REVIEW E 63 021506
AC for different flexible knots with various lengths. Th
variation of ^DX& follows a linear behavior withAC for a
given N; moreover, the lines for different values ofN all
intersect at the same point. This suggests a relation of
form

^DX&5aN~AC21!, ~3!

whereaN depends onN. Furthermore, the slopeaN increases
with N as expected, and appears to have a roughly lin
dependence onN, as shown in the inset of Fig. 7.

IV. LINEAR INCREMENT OF THE MEAN WRITHE

In this section, we focus on the results of mean writ
number of ideal and flexible knots. Comparing the avera
writhe number of ideal knots with flexible knots, they a
numerically very close, as shown in Fig. 8. The reason

FIG. 5. The mean crossing number of ideal knots plotted aga
C1.2. Inset:^X& ideal vs C. Data are taken from Ref.@30#.

FIG. 6. Mean crossing number of flexible knots vsAC for knots
of various lengths. Data for the DNA are from Refs.@19,30#.
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the almost identical values of̂Wr& for ideal and flexible
knots can be understood as the following: each snapshot
figuration of a flexible knot of a given type, is topological
equivalent to an ideal knot of the same knot type; hence
flexible knot can be obtained by lengthening the ideal kno
the appropriate contour length, and then followed by seve
Reidemeister moves@2–4#. For the second and third Reide
meister moves, the net writhe number gain is zero. For
first Reidemeister move, the writhe number increases or
creases by 1 depending on the right or left-handed cros
so produced. But the right- and left-handed crossings hav
equal opportunity to occur, since flexible knot configuratio
result from a random thermal motion, so the mean wri
number^Wr& is unchanged after averaging. Therefore, id
knots could represent flexible real knots for the avera
writhe number, but not for the average crossing number
we discussed previously. It is worth noting that the value

st
FIG. 7. Mean excess crossings plotted againstAC for flexible

knots of various lengths. Inset: the slopes of the fitted straight li
(aN) vs N. Straight lines are best fits to the data.

FIG. 8. Mean Wr vsC for ideal knots and flexible knots. Dat
for the ideal knots are from Refs.@19,30#.
6-4
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CROSSINGS AND WRITHE OF FLEXIBLE AND IDEAL KNOTS PHYSICAL REVIEW E63 021506
^Wr& is independent of the knot contour length~see Fig. 8!,
and thus represents a scale independent topological featu
the knot type.

Another interesting result is the dependence of^Wr& on
C, which is shown in Fig. 9. The data indicate a natu
categorization of the knots in this study into four type
Knots 31,51,71 , . . . belong to the family of torus knots
Knots 41 ,61,81 , . . . are twist knots with even number o
crossings. Knots 52,72,92 , . . . are twist knots with an odd
crossing number. These groups are known as holonom
families to knot theorists. That knots are classified in
groups by the mean writhe number is not too surprisi
because each of these knot groups has topological prope
in common with the others. This is clearly reflected by t
parametrization of their Alexander polynomials and the C
way notations within each group. Table I displays these k
invariants for the four knot groups in this study. The line
relationship between the average writhe number and
minimum crossing number within each knot group is ev
more astonishing.

Such a linear increase of^Wr& within a holonomous knot
group was also observed recently in simulation studies
torus knots on a cubic lattice@27# and ideal knots@19# up to
C511, and for three knot groups~torus, even, and odd twis
knots!. Our results show explicitly that such a linear beha
ior is universal in the sense that different polymer mod
~such as ideal knots, cubic lattice knots and bond-fluctua
models! have the same behavior. Furthermore our data~Fig.
9! indicate that such a result holds at least up toC520, and
is also valid for the 62 ,82 , . . . group. Although there is ye
no theoretical understanding of the origin of such a lin
increment of̂ Wr&, Cerf and Stasiak attempted to summar
such a linear behavior of the data of^Wr& of ideal knots in
terms of topological invariants by an empirical formula@26#

^Wr&5 10
7 wx1 4

7 wy5w1 3
7 ~wx2wy!, ~4!

wherew is the topological writhe mentioned before.wx and
wy5w2wx are the nullification writhe and remainin

FIG. 9. Mean writhê Wr& vs C for various flexible knots. All
data are withN5180. Uncertainties are much less than the sizes
the symbols.
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writhe, respectively. Bothwx andwy are topological invari-
ants, and take integer values. Table I displays the value
these invariant writhes in terms ofC for the knot groups in
this study. Whenw andwx are translated in terms ofC, the
empirical formula @Eq. ~4!# implies that ^Wr& is a linear
function of C, and is tabulated in Table I for each kno
group. From the empirical formulas in Table I~fifth column!,
the slopes of the even and twist knots are the same (10C/7),
while the slopes of the other two groups take the same va
of 4C/7. Our data indicate that the empirical formula hol
rather well, although there are still some noticeable sm
deviations. For example, for 72 and 82 knots, Eq.~4! predicts
them to be the same witĥWr&540/7.5.714, but our results
indicate that â Wr& of 72 is larger than one of 82; the dif-
ference, though small, is larger than the estimated un
tainty.

^Wr& measures the average chirality of a knot, or the
gree of mirror asymmetry, as the knot is viewed from
directions. In a certain sense the value of^Wr& is governed
by the detailed topological interactions among the segme
in the knot. The similarity of the detail topology within
group will hence classify the values of^Wr& into different
knot groups, as shown in Fig. 9. Presumably the princi
portion of these topological interactions gives rise to the n
linear behavior of̂ Wr& within a group as given by the fifth
column in Table I, or Eq.~4!. The small deviations from Eq
~4! are possibly due to the fine structures of the topologi
interactions, which results in observable corrections from
principal topological interactions. In fact, in a recent study
nonequilibrium relaxation of a cut knot@33#, it is observed
that such a natural classification into the same knot gro
also occurs in a nonequilibrium relaxation time which al
has a linear variation withC within a group.

V. SUMMARY

By extensive simulations we have studied flexible kn
up to a crossing of 20. Our results show that the relat
between average crossing numbers of ideal and flex
knots is nonlinear, which disagree with the claim that ide
knots could represent the physical properties of flexi
knots. Our data also suggest that the excess average cro
number for flexible knots behaves as^DX&5aN(AC21).
The coefficientaN increases roughly linearly withN. The
average writhe number̂Wr& of a flexible knots is found to
be numerically the same to its corresponding ideal knot,
is length independent. Thus the ideal configuration of a k
can truly represent some properties of a flexible knot, suc
the mean writhe. However, for some other geometrical
physical properties, such as the mean crossing numbers
ideal configuration may not be that useful, as they are n
linearly correlated for the ideal and flexible knots.^Wr&
naturally classifies knots into holonomous knot groups w
similar detail topologies. More remarkable is the quantiz
linear increment of̂ Wr& with C within each holonomous
group. Such a linear law is quite well obeyed and presu
ably arises from the average intrinsic topological interactio
from the entanglement within the knot.
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